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/I\/Iachine learning: \

® Machine learning 1s a subfield of computer
science that explores the study and construction of
algorithms that can learn from and make
predictions on data.

® Such algorithms operate by building a model from
example 1puts in order to make data-driven
predictions or decisions, rather than following

&ctly static program instructions. /




ﬁpes of machine learning learning \

® Supervised learning : is the machine learning task of
inferring a function from labeled training data. The
training data consist of a set of training examples. In
supervised learning, each example 1s a pair consisting of
an mput object and a desired output value. A supervised
learning algorithm analyzes the tramning data and
produces an inferred function, which can be used for
mapping new examples.

® Unsupervised learning :

Learning useful structure without labeled classes,

optimization criterion, feedback signal, or any other
information beyond the raw data



https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Training_set

/’ REINFORCEMENT LEARNING:

N

Learn how to behave successfully to achieve a goal
while interacting with an external environment .(Learn

via EXperiences!)

\

%




@1 example application \

® An emergency room in a hospital measures
1’7 variables (e.g., blood pressure, age, etc) of
newly admitted patients.

® A decision 1s needed: whether to put a new
patient in an intensive-care unit.

® Due to the high cost of ICU, those patients
who may survive less than a month are given
higher priority.

® Problem: to predict high-risk patients and

\discriminate them from low-risk patients. J




nother application

® A credit card company receives thousands of applications for
new cards. Each application contains information about an
applicant,

® age

® Marital status

® annual salary

® outstanding debts
® credit rating

® etc.

® Problem: to decide whether an application should approved, or
to classify applications into two categories, approved and not
approved.




Machine learning and our focus \

® Like human learning from past experiences.
® A computer does not have “experiences”.

® A computer system learns from data, which represent
some “past experiences” of an application domain.

® Our focus: learn a target function that can be used to
predict the values of a discrete class attribute, e.g.,
approve or not-approved, and high-risk or low risk.

® The task is commonly called: Supervised learning,

\classification, or inductive learning. /




The data and the goal \

® Data: A set of data records (also called
examples, instances or cases) described by

® [ attributes: A1, A2, ... Ak.

® a class: Each example is labelled with a pre-
defined class.

® Goal: To learn a classification model from the
data that can be used to predict the classes of

new (future, or test) cases/instances. J




An example: data (loan application)

Approved or not

1

4= i) b

Ape Has Job | Own House | Credit Rating Class
Y OLUng false false fair N0
Y OLng false false e o0 ™0
Y OLUng true false oo Yoes
Y OLUng true Lrue fair Yes
Y OLng false false Lair ™0
middle talse talse fair ™0
middle talse false oo ™0
middle frue Lrue 2o Yoes
middle false e excellent Y oes
mddle talse LrLe excellent Yoes
ol talse e excellent Yoes
ol talse e 200 Y oes
ol truc false cood Yoes
ol frue talse excellent Y es
ol talse false fair ™0




/zrfexample: the learning task

® [earn a classification model from the data

® Use the model to classify future loan applications into
® Yes (approved) and
® No (not approved)

® What is the class for following case/instance?

Age Has Jaob Own_house Credit-Rating

young  false false good

\

N

Class

?

%




/ﬁpervised vs. unsupervised Learning \

® Supervised learning: classification is seen as supervised
learning from examples.

® Supervision: The data (observations, measurements,
etc.) are labeled with pre-defined classes. It is like that
a “teacher” gives the classes (supervision).

® Test data are classified into these classes too.

® Unsupervised learning (clustering)

® (Class labels of the data are unknown

® Given a set of data, the task is to establish the
existence of classes or clusters in the data




ﬁ{pervised learning process: two steps \

Learning (training): Learn a model using the training data
Testing: Test the model using unseen test data to assess the model
accuracy

Number of correct classifications
Accuracy :

Total number of test cases

o |.earning
[raiming -
alsorithm

data =

S

\ Step |: Traming Step 2: Testing /




/Nhat do we mean by learning? \

® Given
® 3 data set D,
® 3 task T, and
® 3 performance measure M,

a computer system is said to learn from D to
perform the task T if after learning the system’s
performance on T improves as measured by M.

® In other words, the learned model helps the

system to perform T better as compared to no
learning.




n example

® Data: Loan application data
® Task: Predict whether a loan should be approved or not.

® Performance measure: accuracy.

No learning: classify all future applications (test data) to the
majority class (i.e., Yes):

Accuracy = 9/15 = 60%.

® We can do better than 60% with learning.




undamental assumption of learning

Assumption: The distribution of training examples is identical to

the distribution of test examples (including future unseen
examples).

® In practice, this assumption is often violated to certain degree.

® Strong violations will clearly result in poor classification
accuracy.

® To achieve good accuracy on the test data, training examples
must be sufficiently representative of the test data.




/[fecision trees

® Decision tree learning is one of the most widely
used techniques for classification.

® Its classification accuracy is competitive with
other methods, and

® it is very efficient.

N

® The classification model is a tree, called decision

tree.

\

%




The loan data (reproduced)

Approved or not

Ape Has Job | Own Houwase | Credit Hating Class
VO false false fanr ™0
VOLI e false false oo ™0
VO true false a0 Yoes
young true Lrue fair Yoes
YOI E false talse fair ™0
middle false talse fair ™0
middle false false oond ™o
middle true Lrue g Yoes
middle false Lrue excellent Y es
middle talse LrLe excellent Yoes
ol false true excellent Yes
old false Lrue a0 Yoes
old true false a0 Yoes
old true talse excellent Yoes
old false talse fair ™0




A decision tree from the loan data

Decision nodes and leaf nodes (classes)

Y oung middle old
I
| Has job? \ ‘ (Cwn house! ‘ Credit rating?!
AN P
mue  false true false far wood  excellent
F ™ 4 *, - | e
Yes NG Yes NO NGO Yes Yes

(2/2) (3/3) (3/3) (22), (1) (2/2) 22

| Ay




ﬁJ se the decision tree

Age Has_Job Own_house Credit-Rating  Class
young  false false good ?
No
Age?
‘/m muddle old
o |
I [las job? Own house? Credit rating”
A Fa Py
true  false true  false farr  good excellent
’ ™, ’ b e | oy
Yes N Yes NO NO Yes Yes
(2/2) [3/3] (33 (202 (11 (202 (202




gvaluating classification methods \

® Predictive accuracy

Number of correct classifications

Accuracy = —— -
['otal number ot test cases

® Efficiency
® time to construct the model
® time to use the model
® Robustness: handling noise and missing values

® Scalability: efficiency in disk-resident databases

® Interpretability:

® understandable and insight provided by the model




ﬁﬂuaﬁon methods

® Holdout set: The available data set D is divided into two
disjoint subsets,

® the training set Dtrain (for learning a model)

® the test set Dtest (for testing the model)

N

® Important: training set should not be used in testing and the

test set should not be used in learning.

® Unseen test set provides a unbiased estimate of accuracy.

® The test set is also called the holdout set. (the examples in the

original data set D are all labeled with classes.)

® This method is mainly used when the data set D is large.

\

%




valuation methods (cont...)

® n-fold cross-validation: The available data is partitioned into n
equal-size disjoint subsets.

® Use each subset as the test set and combine the rest n-1 subsets
as the training set to learn a classifier.

® The procedure is run n times, which give n accuracies.

® The final estimated accuracy of learning is the average of the n
accuracies.

® 10-fold and 5-fold cross-validations are commonly used.

® This method is used when the available data is not large.




3
@luation methods (cont...) \

® ].eave-one-out cross-validation: This method is used when
the data set is very small.

® It is a special case of cross-validation

® Each fold of the cross validation has only a single test example
and all the rest of the data is used in training.

® If the original data has m examples, this is m-fold cross-
validation

\ %




Evaluation methods (cont...)

® Validation set: the available data is divided into three subsets,
® a training set,
® 3 validation set and
® J test set.

® A validation set is used frequently for estimating parameters in
learning algorithms.

® In such cases, the values that give the best accuracy on the
validation set are used as the final parameter values.

® Cross-validation can be used for parameter estimating as well.




5
Classification measures

® Accuracy is only one measure (error = 1-accuracy).
® Accuracy is not suitable in some applications.

® In classification involving skewed or highly imbalanced data,
e.g., network intrusion and financial fraud detections, we are
interested only in the minority class.

® High accuracy does not mean any intrusion is detected.
® E.g., 1% intrusion. Achieve 99% accuracy by doing nothing.

® The class of interest is commonly called the positive class, and
the rest negative classes.




ack propagation
® Backpropagation is a systematic method for training multiple-layer ANNs.
® The standard backpropagation algorithm is as follows :
Build a network with a chosen number of input, hidden and output units.
Initialize all the weights to low random values
Choose a single training pair at random
Copy the input pattern to the input layer

Cycle the network so that the activations from the inputs generate the
activations in the hidden and output layers

6. Calculate the error derivative between the output activation and the target
output.

7. Backpropagate the summed products of the weights and errors in the output
layer in order to calculate the error in the hidden units.

8. Update the weights attached to each unit according to the error in that unit,
the output from the unit below it, and the learning parameters, until the error
is sufficiently low or the network settles.

ok W=




Conclusion

® Applications of supervised learning are in almost any field or
domain.

® There are numerous classification techniques.
® There are still many other methods, e.g.,

® Bayesian networks

® Neural networks

® Genetic algorithms

® Fuzzy classification

This large number of methods also show the importance of
classification and its wide applicability.

® It remains to be an active research area.




Unsupervised Learning




Supervised learning vs. unsupervised
learning

Supervised learning: discover patterns in the
data that relate data attributes with a target
(class) attribute.

2 These patterns are then utilized to predict the
values of the target attribute in future data
Instances.

Unsupervised learning: The data have no

target attribute.

2 We want to explore the data to find some intrinsic
structures in them.



What 1s clustering?

Clustering is the classification of objects into
different groups, or more precisely, the
partitioning of a data set into subsets
(clusters), so that the data in each subset
(ideally) share some common trait - often
according to some defined distance measure.


http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Metric_(mathematics)

Clustering

Clustering is a technique for finding similarity groups
In data, called clusters. l.e.,

2 it groups data instances that are similar to (near) each other
in one cluster and data instances that are very different (far
away) from each other into different clusters.

Clustering is often called an unsupervised learning
task as no class values denoting an a priori grouping
of the data instances are given, which is the case in

supervised learning.

Due to historical reasons, clustering is often
considered synonymous with unsupervised learning.



An 1llustration

The data set has three natural groups of data points,
l.e., 3 natural clusters.

o 0D
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What 1s clustering for?

Let us see some real-life examples
Example 1: groups people of similar sizes

together to make “small”, “medium™ and
“large” T-Shirts.

2 Tailor-made for each person: too expensive
2 One-size-fits-all: does not fit all.

Example 2: In marketing, segment customers
according to their similarities
2 To do targeted marketing.



Types of Clustering Techniques

Clustering
Hierarchical Partitional
Single Complete Square Mixture
Link Link Error Maximization
CobWeb K-means Expectation

Maximization




Types of Clustering Techniques:

Hierarchical algorithms: these find successive clusters
using previously established clusters.

1. Agglomerative ("bottom-up"): Agglomerative algorithms
begin with each element as a separate clusterand  merge
them into successively larger clusters.

2. Divisive ("top-down"): Divisive algorithms begin with  the
whole set and proceed to divide it into successively smaller
clusters.

2. Partitional clustering: Partitional algorithms determine all
clusters at once. They include:

2  K-means and derivatives




K-means clustering

K-means is a partitional clustering algorithm
Let the set of data points (or instances) D be

{x1, x2, ..., Xn},
where xi = (xi1, xi2, ..., xir) is a vector in a real-
valued space X Rr, and ris the number of attributes
(dimensions) in the data.

The k-means algorithm partitions the given
data into k clusters.

3 Each cluster has a cluster center, called
centroid.

2—kis specified by the user



K-means algorithm

Given K, the k-means algorithm works as
follows:

1)Randomly choose k data points (seeds) to be the
initial centroids, cluster centers

2)Assign each data point to the closest centroid

3)Re-compute the centroids using the current
cluster memberships.

4)If a convergence criterion is not met, go to 2).

10



‘ K-means algorithm — (cont ...)

Algorithm g-means(k. D)

| Choose k data points as the mitial centroids (cluster centers)

2 repeal

3 for cach data pomt x € Ddo

| compute the distance from X to each centrod.

3 assten X 10 the closest centrowd /l a centroid represents a cluster
b endfor

] re-compute the centronds using the current cluster memberships

8 until the stopping criterion 15 met

=11



Stopping/convergence criterion

no (or minimum) re-assignments of data
points to different clusters,

no (or minimum) change of centroids, or

minimum decrease in the sum of squared
error (SSE),

k
: 2 (1)
SSE . dist(x,m ;)
j 1
2 Ciis the jth cluster, mj is the centroid of cluster
Cj (the mean vector of all the data points in Cj),
and dist(x, mj) is the distance between data point

x and centroid my.

12



An example

ftevation 1 (B). Cluster assignment (U1 Re-compute centronds

13



An example (cont ...)

HEraion

a0 (B Cluster assignment
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14



‘ An example distance function

The k-means algorithm can be vsed Tor any application data set where the
mean can be dehned and computed. In the Euclidean space. the mean ol
cluster 15 computed with

l
M = — Zx, 12)
{j ) = A

where |} 15 the number of data points in cluster €. The distance Irom one
data point x; to a mean (centrowd ) my 15 computed with

I_.l_l
™

dist{x;.m )=|x;—m | {

1 ]

FAX =M )

— Iy 2 iy
—JI{J.” Mg )+ (X =iy )

"15



Strengths of k-means

Strengths:

Q. Simple: easy to understand and to implement
0 Efficient: Time complexity: O(tkn),
where n is the number of data points,

k is the number of clusters, and
tis the number of iterations.

0 Since both k and t are small. k-means is considered a
linear algorithm.

K-means is the most popular clustering algorithm.

Note that: it terminates at a local optimum if SSE is
used. The global optimum is hard to find due to

complexity. "



Weaknesses of k-means

The algorithm is only applicable if the mean
IS defined.

2 For categorical data, k-mode - the centroid is
represented by most frequent values.

The user needs to specify k.

The algorithm is sensitive to outliers

2 Qutliers are data points that are very far away
from other data points.

2 Qutliers could be errors in the data recording or
some special data points with very different

values.
17



Weaknesses of k-means: Problems with

outliers
nlnun . o outher
L o ©

outher

e

(B Ideal clusters



Weaknesses of k-means: To deal with

outliers
One method is to remove some data points in the

clustering process that are much further away from
the centroids than other data points.
2 To be safe, we may want to monitor these possible outliers
over a few iterations and then decide to remove them.
Another method is to perform random sampling.
Since in sampling we only choose a small subset of
the data points, the chance of selecting an outlier is
very small.

2 Assign the rest of the data points to the clusters by
distance or similarity comparison, or classification

19



Weaknesses of k-means (cont ...)
The algorithm is sensitive to initial seeds.

a nﬂ
e o o]
o D o

Q 0

(A0, Random selection of seeds (centroids )

(B leration | (Y, Tteration 2

20



Weaknesses of k-means (cont ...)

If we use different seeds: good results

o There are some
o @ ° methods to help
N choose good
0 L
0 o seeds

(AL Random selection of & seeds (centroids)

(B). Iteration | (), Meration 2

21



Weaknesses of k-means (cont ...)

The k-means algorithm is not suitable for
discovering clusters that are not hyper-ellipsoids (or
hyper-spheres).

LA Two natural clusters (B f-means clusters

22



K-means summary

Despite weaknesses, k-means is still the

most popular algorithm due to its simplicity,

efficiency and

2 other clustering algorithms have their own lists of
weaknesses.

No clear evidence that any other clustering

algorithm performs better in general

2 although they may be more suitable for some
specific types of data or applications.

Comparing different clustering algorithms is a

difficult task. No one knows the correct

clusters!

23



K-MEANS
CLUSTERING




What is clustering?

® Clustering is the classification of objects into
different groups, or more precisely, the
partitioning of a data set into subsets
(clusters), so that the data in each subset
(ideally) share some common trait - often
according to some defined distance measure.


http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Metric_(mathematics)

Types of clustering:

1. Hierarchical algorithms: these find successive clusters
using previously established clusters.

1. Agglomerative ("bottom-up"): Agglomerative algorithms
begin with each element as a separate clusterand  merge
them into successively larger clusters.

2. Divisive ("top-down"): Divisive algorithms begin with  the
whole set and proceed to divide it into successively smaller
clusters.

2. Partitional clustering: Partitional algorithms determine all
clusters at once. They include:

K-means and derivatives
Fuzzy c-means clustering
QT clustering algorithm




Common Distance measures:

® Dijstance measure will determine how the similarity of two
elements is calculated and it will influence the shape of the
clusters.

They include:

1. The Euclidean distance (also called 2-norm distance) is
given by:

dix,y)= E Xi— W
2. The Manhattan distance (also called taxicab norm or 1-
norm) is given by:



http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Manhattan_distance

3.The_maximum norm is given by:

A(x, ¥)=max| xi.— ¥
V) =1ma |
4. The Mahalanobis distance corrects data for
different scales and correlations in the variables.

5. Inner product space: The angle between two
vectors can be used as a distance measure when
clustering high dimensional data

6. Hamming distance (sometimes edit distance)
measures the minimum number of substitutions
required to change one member into another.



http://en.wikipedia.org/wiki/Maximum_norm
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Inner_product_space
http://en.wikipedia.org/wiki/Hamming_distance

K-MEANS CLUSTERING

® The k-means algorithm is an algorithm to cluster
n objects based on attributes into k partitions,
where k < n.

® |tis similar to the
expectation-maximization algorithm for mixtures of
Gaussians in that they both attempt to find the
centers of natural clusters in the data.

® |t assumes that the object attributes form a
vector space.


http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm
http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Vector_space

® An algorithm for partitioning (or clustering) N
data points into K disjoint subsets S;
containing data points so as to minimize the
sum-of-squares cnterlon

%)

=1 nes
where xn is a vector representing the the nth

data point and uj is the geometric centroid of
the data points in ;.

—


http://mathworld.wolfram.com/GeometricCentroid.html

® Simply speaking k-means clustering is an
algorithm to classify or to group the objects
based on attributes/features into K number of
group.

® K is positive integer number.

® The grouping is done by minimizing the sum
of squares of distances between data and the
corresponding cluster centroid.



How the K-Mean Clustering
algorithm works?

/ Number of f

cluster K

-

Centroid

¥ ¢
Distance objects to
centroids

L 4 i

Grouping based on
minimum distance




¢ Step 1: Begin with a decision on the value of k =
number of clusters .

® Step 2: Put any initial partition that classifies the
data into k clusters. You may assign the
training samples randomly,or systematically
as the following:

1.Take the first k training sample as single-
element clusters

2. Assign each of the remaining (N-k) training
sample to the cluster with the nearest centroid.
After each assignment, recompute the centroid of
the gaining cluster.




® Step 3: Take each sample in sequence and
compute its distance from the centroid of
each of the clusters. If a sample is not
currently in the cluster with the closest
centroid, switch this sample to that cluster
and update the centroid of the cluster
gaining the new sample and the cluster
losing the sample.

® Step 4 . Repeat step 3 until convergence is
achieved, that is until a pass through the
training sample causes no new assignments.



http://people.revoledu.com/kardi/tutorial/Similarity/index.html

A Simple example showing the
implementation of k-means algorithm

Individual Variable 1 Variable 2

1 1.0 1.0
2 1.5 2.0
3 3.0 4.0
al 5.0 7.0
5 3.5 5.0
6 4.5 5.0
! 3.5 4.5




Step 1:

Initialization: Randomly we choose following two centroids
(k=2) for two clusters.

In this case the 2 centroid are: m1=(1.0,1.0) and
m2=(5.0,7.0).

Individual WVariable 1 “ariabhle 2

1 1.0 1.0
' 1.5 < 0
3 3.0 4.0
: 5.0 [y
= 3.5 5.0
L] 4.5 5.0
[ 3.5 4.5

Individual Mean Vector
Group 1 1 (1.0, 1.0)
Group 2 4 (5.0, 7.0)




Step 2:

® Thus, we obtain two clusters
containing:

{1,2,3} and {4,5,6,7}.
® Their new centroids are:

|

m=(2(1.0+15+ 3.D]%{1.EI+ 2.0+4.0))=(1.83.2.33)

l .. © e a -
m:=|211~:1.EI—3.:—+.:1—J.:

"
#

=(4.125 38)

-.%[?.u:u+5.n+ 50+4.5))

nowiiual | Cenfrold 1 | Cenirod 2
1 d (3
2015, 401 1Nl .10
3 .61 381
- 1.1 0
5 4.7 L5
5 531 L0
7 4.31 L9

dim = 1.0-15F 41.0-2.0F =1.12

d(m, 2= 5.0-15F 47.0-20F =6.10




Step 3:

® Now using these centroids
we compute the Euclidean
distance of each object, as
shown in table.

® Therefore, the new
clusters are:

{1,2} and {3,4,5,6,7}

® Next centroids are:
m1=(1.25,1.5) and m2 =
(3.9,5.1)

Individual | Centroid 1 | Centroid 2
| 157 5.2
. 047 428
) 214 1.78
4 564 .84
§ 3.15 0.73
i 178 0.54
7 774 1.08




® Step 4 .

The clusters obtained are:

{1,2} and {3,4,5,6,7}

® Therefore, there is no
change in the cluster.

® Thus, the algorithm comes
to a halt here and final

result consist of 2 clusters
{1,2} and {3,4,5,6,7}.

ndvidual | Centroid 1 | Centroid 2
1 0.58 0.0z
2 [. 56 28
3 105 142
1 il 2.0
i 4.16 041
i 4.78 0.61
7 3.5 0.7




PLOT




(with K=3)

ndwvidual {my=1|my=2|my=3 | cluster
0|1 161
i 2 0 | 25 z
3 i ]
i 21 610 | 3| | 2
5 P 1. B I
i G I O 1
T a0 0oy 2

custenng with initil czniroids (1, 2, 3)

Step 1

[

nrvidual | | | cluster
(1.0, 1.00 (1.5, 200 i28.5.1)
1 0 1.11 5.2 1
z 112 0 38 2
3 381 25 1.4 3
- 721 8.10 2.0 3
d 472 161 0.41 3
i 5.4 1.4 081 3
7 430 10 0.72 3
Step 2




PLOT

)
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Real-Life Numerical Example

of K-Means Clustering

We have 4 medicines as our training data points object

and each medicine has 2 attributes. Each attribute
represents coordinate of the object. We have to
determine which medicines belong to cluster 1 and
which medicines belong to the other cluster.

Object

Attributel
weight index

X):

Attribute 2 (Y): pH

Medicine A

1

1

Medicine B

2

1

Medicine C

4

3

Medicine D




Step 1:

Initial value of
centroids : Suppose
we use medicine A and
medicine B as the first
centroids.

Let and c1 and c2

denote the coordinate
of the centroids, then
c1=(1,1) and c2=(2,1)

attribute 2 (Y ): pH

= im —  im k3 M L3 h = I
1 1 1

iteration 0

"""""""""""""""""""""""""""""""

"""""""""""""""""""""""""""""""

.................................................

attribute 1 (X): weight index




Objects-Centroids distance : we calculate the
distance between cluster centroid to each object.
Let us use Euclidean distance, then we have
distance matrix at iteration O is

. [m 1 3861 5} e, =(11) group—1

1 0 283 424
A 5 C D

{1 2 4 3 } X

1 1 3 4 i

Each column in the distance matrix symbolizes the
object.

The first row of the distance matrix corresponds to the
distance of each object to the first centroid and the
second row is the distance of each object to the second
centroid.

For example, distance from medicine C = (4, 3) to the
first centroid «=00 is, and its distance to the
second centroid is , =) IS etc.

¢, =i(2,1) growp-2


http://people.revoledu.com/kardi/tutorial/Similarity/EuclideanDistance.html

Step 2:

® Objects clustering : We
assign each object based
on the minimum distance.

® Medicine A is assigned to
group 1, medicine B to
group 2, medicine C to
group 2 and medicine D to
group 2.

® The elements of Group
matrix below is 1 if and
only if the object is
assigned to that group.

‘ {1 00 D} gratp — 1

o1 1 1
A F C D

granuy — 2

attribute 2 (Y): pH

= tm = im k3 M L EM f= m
1 1

iteration 1

"""""""""""""""""""""""""""""

""""""""""""""""""

..............

"""""""""""""""""""""""""""""

"""""""""""""""""""""""""""""

4

h

attribute 1 (X): weight index




® |teration-1, Objects-Centroids distances :| The
next step is to compute the distance of all
objects to the new centroids.

® Similar to step 2, we have distance matrix at
iteration 1 is

Dl

314 236 047 189 :jz{%,%j graup — 2
4 5 C D

1 2 4 5 | X
11 3 4 | F

01 361 5} 6, =(11) group-1



® |teration-1, Objects
clustering:Based on the new
distance matrix, we move the
medicine B to Group 1 while
all the other objects remain.

The Group matrix is shown

below iteration 2

_.ﬁ..
L ) |

T
1

G]':l 1 0 0 graup — 1
o o 1 1

A F O LD

¢ |teration 2, determine
centroids: Now we repeat step
4 to calculate the new centroids
coordinate based on the
clustering of previous iteration.
Group1 and group 2 both has
two members, thus the new

o
[y |

SO — &

[
[ ) | [
1

F-a
1

—
T
L

attribute 2 (Y ): pH

o
n

—_

L
—_
[
T
o
Lm

centroids are«=-—2=0:b

445 3+4 L a1 . - :
ande === attribute 1 (X): weight index




® |teration-2, Objects-Centroids distances :
Repeat step 2 again, we have new distance

matrix at iteration 2 as

, [05 05 320 461 =111
1430 354 071 071] ¢, =(41,3Y) group-2



* |teration-2, Objects clustering: Again, we
assign each object based on the minimum

distance.

GE

]

1 0 0
00 1

A F C D

grong — |

ErOLUp — ¢

® \We obtain result that ¢*=¢' . Comparing the

grouping of last iteration and this iteration reveals
that the objects does not move group anymore.

® Thus, the computation of the k-mean clustering
has reached its stability and no more iteration is

needed..




We get the final grouping as the results as:

Object Featurel(X): Feature2 Group
weight index (Y): pH (result)
Medicine A 1 1 1
Medicine B 2 1 1
Medicine C 4 3 2
Medicine D 5 4 2




K-Means Clustering Visual Basic Code

Sub kMeanCluster (Data() As Variant, numCluster As Integer)

" main function to cluster data into k number of Clusters

"input:

'+ Data matrix (0 to 2, 1 to TotalData);

'Row 0 = cluster, 1 =X, 2=Y; data in columns

"+ numCluster: number of cluster user want the data to be clustered
'+ private variables: Centroid, TotalData

"ouput:

' 0) update centroid

' 0) assign cluster number to the Data (= row 0 of Data)

Dim i As Integer

Dim j As Integer

Dim X As Single

Dim Y As Single

Dim min As Single
Dim cluster As Integer
Dim d As Single

Dim sumXY()

Dim isStillMoving As Boolean

isStillMoving = True

if totalData <= numCluster Then

'only the last data is put here because it designed to be interactive
Data(0, totalData) = totalData ' cluster No = total data
Centroid(1, totalData) = Data(1, totalData) ' X
Centroid(2, totalData) = Data(2, totalData) ' Y

Else

‘calculate minimum distance to assign the new data
min = 10 * 10 'big number

X = Data(1, totalData)

Y = Data(2, totalData)

Fori =1 To numCluster




Do While isStillMoving

" this loop will surely convergent

‘calculate new centroids

"1 =X, 2=Y, 3=count number of data

ReDim sumXY(1 To 3, 1 To numCluster)

Fori =1 To totalData

sumXY(1, Data(0, i)) = Data(1, i) + sumXY(1, Data(0, i))
sumXY(2, Data(0, i)) = Data(2, i) + sumXY(2, Data(0, i))
Data(O0, i))

sumXY(3, Data(0, i)) = 1 + sumXY(3, Data(0, i))

Next i

Fori =1 To numCluster

Centroid(1, i) = sumXY(1, i) / sumXY(3, i)

Centroid(2, i) = sumXY(2, i) / sumXY(3, i)

Next i

‘assign all data to the new centroids

isStillMoving = False

Fori =1 To totalData

min = 10 * 10 'big number
X =Data(1, i)

Y = Data(2, i)

For j =1 To numCluster

d = dist(X, Y, Centroid(1, j), Centroid(2, j))
If d < min Then

min =d

cluster = j

End If

Next j

If Data(0, i) <> cluster Then
Data(0, i) = cluster
isStillMoving = True

End If

Next i

Loop

End If

End Sub




Weaknesses of K-Mean Clustering

When the numbers of data are not so many, initial
grouping will determine the cluster significantly.

The number of cluster, K, must be determined before
hand. Its disadvantage is that it does not yield the same
result with each run, since the resulting clusters depend
on the initial random assignments.

We never know the real cluster, using the same data,
because if it is inputted in a different order it may
produce different cluster if the number of data is few.

It is sensitive to initial condition. Different initial condition
may produce different result of cluster. The algorithm
may be trapped in the Jocal optimum.




Applications of K-Mean
Clustering

® |t is relatively efficient and fast. It computes result
at O(tkn), where n is number of objects or points, k
IS number of clusters and t is number of iterations.

® k-means clustering can be applied to machine
learning or data mining

® Used on acoustic data in speech understanding to
convert waveforms into one of k categories (known
as Vector Quantization or Image Segmentation).

® Also used for choosing color palettes on old
fashioned graphical display devices and Image
Quantization.




CONCLUSION

® K-means algorithm is useful for undirected
knowledge discovery and is relatively simple.
K-means has found wide spread usage in lot
of fields, ranging from unsupervised learning
of neural network, Pattern recognitions,
Classification analysis, Artificial intelligence,
Image processing, machine vision, and many
others.



STATISTICAL LEARNING; NAIVE BAYES LEARNING;
CLASSIFICATION; EVALUATION; SMOOTHING

CHAPTER 20, SECTIONS 1-3
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Attribution

Modified from Stuart Russell’s slides (Berkeley)

Parts of the slides are inspired by Dan Klein’s lecture mate-
rial for CS 188 (Berkeley)

Chapter 20, Sections 1-3 2



Outline

> Review: Inductive learning

{> Bayesian learning

¢ Maximum a posterior and maximum likelihood learning

{> Bayes net learning

— ML parameter learning with complete data

— linear regression

Chapter 20, Sections 1-3
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Review: Inductive Supervised Learning

> Training Set, Data of N examples of input-output pairs

(1, 91) - (2N, YnN)
such that y; is generated by unknown function y = f(x)

> Learning: discover a hypothesis function A that approximates the
true function f

{ Test Set is used to measure accuracy of hypothesis h

> Hypothesis h generalizes well if it correctly predicts the value of y in
novel examples

> Hypothesis space, Hypothesis being realizable

Chapter 20, Sections 1-3 4



Review: Classes of Learning Problems

{» Classification: The output y of a true function that we learn is a
finite set of values, e.g., wait or leave in a restaurant; sunny, cloudy, or
Taimny.

{ Regression: The output y of a true function that we learn is a number,
e.g., tomorrow’s temperature.

$ Sometimes the function f is stochastic — strictly speaking, it is not
a function of z, so what we learn is a conditional probability distribution

P(Y|x).

Chapter 20, Sections 1-3 5



Statistical learning

¢ Training Set, Data — evidence — instantiations of all or some of the
random variables describing the domain

> Hypotheses are probabilistic theories of how the domain works

Example: Suppose there are five kinds of bags of candies:

10% are hy:
20% are ho:
40% are hs:
20% are h.y:
10% are hs:

100% cherry candies

75% cherry candies 4+ 25% lime candies
50% cherry candies + 50% lime candies
25% cherry candies 4+ 75% lime candies
100% lime candies

BHDOE

Then we observe candies drawn from some bag: ®©©©®® 000000
What kind of bag is it? What flavour will the next candy be?

Chapter 20, Sections 1-3 6



Full Bayesian learning I

{> Bayesian learning: calculates the probability of each hypothesis,
given the data, and makes predictions on that basis

{» The predictions are made by using all the hypotheses, weighted by
their probabilities, rather than by using a single “best” hypothesis

> Thus, learning is reduced to probabilistic inference

Chapter 20, Sections 1-3 7



Full Bayesian learning 11

View learning as Bayesian updating of a probability distribution
over the hypothesis space

H is the hypothesis variable, values /1, ho, . . ., prior (unconditional) prob-
abilities P(H )

Jth observation d; gives the outcome of random variable D;
training data d =d, ..., dy

Given the data so far, each hypothesis has a posterior (conditional) prob-
ability:

P(hi|d) = aP(d|h;)P(h;)

where P(d|h;) is called the likelihood of the data under each hypothesis

Chapter 20, Sections 1-3 8



Full Bayesian learning 111

Predictions of unknown quantity X, use a likelihood-weighted average over
the hypotheses:

P(X|d) = ¥, P(X|d, h) P(hi|d) = %, P(X|h) P(li|d)

where we assume that each hypothesis determines a probability distribution
over X.

No need to pick one best-guess hypothesis!

Chapter 20, Sections 1-3 9



Example I

Suppose there are five kinds of bags of candies:
10% are hi: 100% cherry candies
20% are ho: 75% cherry candies + 25% lime candies
40% are hs: 50% cherry candies + 50% lime candies
20% are hy: 25% cherry candies + 75% lime candies
10% are hs: 100% lime candies

&
Then we observe candies drawn from some bag: ®©©®© 00000 0

What kind of bag is it? What flavour will the next candy be?

Chapter 20, Sections 1-3 10



Example I

PHDD

Assume that the prior distribution over hl, . .., hsis given (0.1,0.2,0.4,0.2,0.1)
(advertised by manufacture)

The likelihood of the data is calculated under the assumption that the
observations are independent and identically distributed, so that

P(dlh;) = I1;P(d;[hi)

Then two formulas can be put to work:
{ probabilities of each hypothesis: P(h;|d) = aP(d|h;)P(h;)
& predictions of unknown quantity X: P(X|d) = 22; P(X|h;)P(h|d)

Chapter 20, Sections 1-3 11



Posterior probability of hypotheses
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All observations are lime candies
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Prediction probability

O
©

o
o)

o
fo)

P(next candy is lime | d)
o
N

o
&

o
N

4 6 8 10
Number of samples in d

o
N

All observations are lime candies;

P(next candy is lime|d) = 2; P(next candy is lime|h;) P(h;|d)

Chapter 20, Sections 1-3
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MAP approximation I

¢ Bayesian prediction eventually agrees with the true hypothesis (under
certain technical conditions)

¢ Summing over the hypothesis space is often intractable
(e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

> Resorting to simplified methods: approximations
Maximum a posteriori (MAP) learning: choose hyap maximizing P (h;|d)
Make a prediction based on this single most probable hypothesis

Predictions according to MAP hyap are approximately Bayesian:

P(X|d) = 2; P(X[|h;)P(hi|d) = Pyap(X|d)

¢ Finding MAP hypothesis is often much easier than Bayesian learning

Chapter 20, Sections 1-3 14



MAP approximation 11

Availability of more data is essential for the MAP method:
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All observations are lime candies. hs 1s the winner after 3 candies
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Maximum Likelihood approximation

For large data sets, prior becomes irrelevant

Consider a uniform prior, e.g., for hl, ..., hs instead of given prior (0.1,0.2,0.4,0.2, 0.1
consider (0.2,0.2,0.2,0.2,0.2)

Maximum likelihood (ML) learning: choose Ay, maximizing P(d|h;)

[.e., simply get the best fit to the data; identical to MAP for uniform prior
(which is reasonable if all hypotheses are of the same complexity)

(MAP) learning: choose hyap maximizing P(h;|d) = aP(d|h;)P(h;)

ML is the “standard” (non-Bayesian) statistical learning method

Chapter 20, Sections 1-3 16



Learning a Probability Model

{» Training Set, Data of N examples of input-output pairs

(1, 91) - (2N, YN)
such that y; is generated by unknown function y = f(x)

> Learning I: discover a hypothesis function A that approximates the
true function f, e.g, Decision Trees

> Learning II: Given a fized structure of a probability model of
the domain, discover its parameters from Data: parameter learning

As a result given parameters of a problem instance, learned probability
model can be used to answer queries about problem instances

Classification: Observed parameters of a given instance and learned
probability model of a domain provides probabilistic information on the
likelihood of a particular classification

Chapter 20, Sections 1-3 17



Classification Problems

¢ Classification is the task of predicting labels (class variables) for inputs
¢ Commercially and Scientifically Important

Examples:

e Spam Filtering

e Optical Character Recognition (OCR)

e Medical Diagnoses

e Part of Speech Tagging

e Semantic Role Labeling/Information Extraction

e Automatic essay grading

e [raud detection

Chapter 20, Sections 1-3
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Probabilistic Models

A naive Bayes model:

P(Cause, Ef fecty, ..., Effect,) = P(Cause)ll,P(Ef fect;|Cause)

Comr (onme

where “Cause” is taken to be the “class” variable, which is to be predicted.
The “attribute-parameter” variables are the leaves — “Effects”.

Model is “naive”: assumes parameter variables to be independent

Model Training: using Training Set to uncover the conditional proba-
bility distribution of parameters P(E f fect;|Cause;)

Once the model is trained, given values of parameters of a problem instance,
we can use (77) to classify an instance.

Chapter 20, Sections 1-3 19



Independence as Abstraction

Model is “naive”’: assumes parameter variables to be independent
May lead to overconfidence
Indeed, all CAPS in Spam is not independent of $$ symbols

Yet, it is often a fine abstraction, and a computationally tractable one

Chapter 20, Sections 1-3
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Example: Training a Model

Optical Character Recognition

¢ Given a labeled collection M of digits in digital form
& nxn grid

¢ Features: Pizel; j =on or of f, Adj

& A naive Bayes model:

P(Digit, Pizely,, ..., Pizel, ,, Adj) =
P(Digit)I1, ;P(Pixel; ;| Digit)P(Adj)

Model Training Process: For M

<> P(O) _ couTj\(jlW,O)). . P<9) _ cowﬁ(j‘W,Q)

O P(pizely; = on|0) = CO“?;&%’((;\%’)LD,. .

O P(pizeli; = of f|0) = 1 — P(pizel; 1 = onl0), ...

Chapter 20, Sections 1-3 21



Example: Classification in OCR

Given parameters-attributes-features of an unseen instance and trained
model we can compute

P(0, pizelyy = on, ..., Pixel,, = of f, Adj = true) = x

P(9, pizely 1 = on, ..., Pizvel,, = of f, Adj) = g

and then pick the most likely class, i.e., class that corresponds to the max-
imum value among xy, . . ., Ty.

Chapter 20, Sections 1-3 22



Evaluation

¢ Split Labeled Data into Three Categories (80/10/10; 60/20/20):

1. Training set
2. Held-out set
3. Test set

{ Decide on Features (Parameters, Attributes): attribute-value pairs that
characterize each instance

$ Experimentation-Evaluation Cycle:

1. Learn parameters, (e.g., model probabilities) on training set

2. Tune set of features on held-out set

3. Compute accuracy on test set: accuracy — fraction of instances pre-
dicted correctly

Chapter 20, Sections 1-3 23




Feature Engineering

Feature Engineering is crucial!
> Features translate into hypotheses space
> Too few features: cannot fit the data

¢ Too many features: overfitting

Chapter 20, Sections 1-3 24



Generalization and Overfitting

{ Relative frequency parameters will overfit the training data

e Since training set did not contain 3 with pixel ¢, 7 on during training
does not mean it does not exist (but note how we will assign probability
0 to such event!)

e Unlikely that every occurrence if “minute” is 100% spam
e Unlikely that every occurrence if “seriously” is 100% ham
e Similarly, what happens to the words that never occur in training set?

e Unseen events should not be assigned 0 probability

& To generalize better: smoothing is essential

Chapter 20, Sections 1-3 25



Estimation: Smoothing

> Intuitions Behind Smoothing

e We have some prior expectation about parameters
e Given little evidence, we should prefer prior

e Given a lot of evidence the data should rule

) Maximum likelihood estimate

count(x)

~ total samples

PA,,]L<I)

does not account for above intuitions

Consider three coin flips: Head, Head, Tail, what is Py ()

Chapter 20, Sections 1-3 26



Estimation: Laplace Smoothing

> Laplace’s estimate

count(x) + 1
P p—
LAP@:) total Saﬂ’lpleS + ‘X‘

e Pretend that every outcome appeared once more than it did

e Note how it elegantly deals with earlier unseen events

& Laplace’s estimate — extended with strength factor:

count(x) + k
P p—
LAP,k@j) total samples + k‘X‘

Consider three coin flips: Head, Head, Tail; what are Pyr(x), Prap(z), Ppapi(x)?

{» There are many ways to introduce smoothing as well as methods to
account for unknown events

Chapter 20, Sections 1-3 27



Summary

Full Bayesian learning gives best possible predictions but is intractable
MAP learning balances complexity with accuracy on training data
Maximum likelihood assumes uniform prior, OK for large data sets
Learning Models, Naive Bayses Nets

Classification Problem by Means of Naive Bayses Nets

Evaluation Concepts

Smoothing

Chapter 20, Sections 1-3
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Naive Bayes Model
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Background

There are three methods to establish a classifier

a) Model a classification rule directly
Examples: k-NN, decision trees, perceptron, SVM

b) Model the probability of class memberships given input data

Example: multi-layered perceptron with the cross-entropy cost

C) Make a probabilistic model of data within each class
Examples: naive Bayes, model based classifiers

a) and b) are examples of discriminative classification
C€) is an example of generative classification
b) and c¢) are both examples of probabilistic classification

3



Probability Basics

Prior, conditional and joint probability

Prior probability: P(X)

Conditional probability: p(X,1X,), P(X,1X,)

Joint probability: x (x, x,), P(X) P(X,,X,)

Relationship: p(x, ,x,) P(x,1X)P(X,) P(X,1X,)P(X,)

Independence: P(X,1X,) P(X,),P(X,1X,) P(X,)PX,,X,) P(X)PX,)
Bayesian Rule

P(C1X) w Posterior W
P(X) Evidence



Simple Example of State Estimation

B Suppose a robot obtains measureament z
B What is P(doorOpen|z)?




Causal vs. Diagnostic Reasoning

P(open|z) is diagnostic.

P(z|lopen) is causal.

Often causal kno e is easier to

obtain.

count frequencies!

Bayes rule allows us to use causal

knowledge:

FPlopen| z)=

Pz | open)P{opern)

P(z)



Example

B Pizlopen) = 0.0 P(z|—open) = 0.3

B FPlopen) = P{—open) = 0.3

Plopenr 2) = P(z | opesn) Plopren)

Fiz|oper)pilopert) + Plz | oper) p{ opert)

_—
'

=0.a]

U.o-01.5
(Do) 5 +10() 3-

Al |1

DMoperr oy =
ot ] 0

* 7 raises the probability that the door I1s open.



Probabilistic Classification

Establishing a probabilistic model for classification
Discriminative model
P(CIX) C ¢, ,¢,X (X;, ,X))
Generative model
PXIC) C ¢, ,¢, X (X;, ,X)

MAP classification rule
MAP: Maximum A Posterior

ASS|gn.xtOc If_P_(C cIX x) P(C ¢cIX xX) ¢ c¢,c ¢, ,c
Generative classification with the MAP rule

Apply Bayesian rule to convert:
P(CIX) . Xlljfxl; e P(XIC)P(C)
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Nalve Bayes

Bayes classification
P(CIX) PXIC)P(C) P(X;, ,X, IC)P(C)
Difficulty: learning the joint probability P(X,, ,X,IC)
Naive Bayes classification
Making the assumption that all input attributes are independent
P(X,,X,, ,X, 1C) PX,1X,, ,X,;C)P(X,, ,X,IC)
P(X,|C)P(X,, ,X, 1C)

P(X,IC)P(X,IC) P(X,|C)
MAP classification rule

[P(x,1c’) P(x,1c)P(c’) [P(x;lc) P(x,1c)]P(c), ¢ c,c ¢, ,c

9



Nalve Bayes

Naive Bayes Algorithm (for discrete input attributes)
- Learning Phase: Given a training set S,

For each target valueof ¢, (c; ¢, ,c;)

IS(C c;) estimate P(C c;) with examplesin S;

For every attribute value a; of each attributex; (j 1, ,m;k 1, ,N;)
lg(X]- a, 1C ¢;) estimate P(X; a,;I1C ¢;)withexamplesin S;

Output: conditional probability tables; for . »; ; elements
], ]

Test Phase: Given an unknown instance (a,, ,a)

Look up tables to assign the label ¢* to X" if

*

[ls(allc*) ls(anlc*)]ls(c*) [ls(allc) ﬁ(anlc)]ﬁ(c), c c,c ¢, ,C

10



Example

Example: Play Tennis

PlayTennis: training examples
. L=

Day Outlook  Temperature = Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No




Learning Phase

Example

Outlook | Play=Yes | Play=No | | Temperature | Play=Yes | Play=No
Sunny 2/9 3/5 Hot 2/9 2/5
Overcast 4/9 0/5 Mild 4/9 2/5
Rain 3/9 2/5 Cool 3/9 1/5
Humidity | Play=Yes | Play=No Wind | Play=Yes | Play=No
High 3/9 4/5 Strong 3/9 3/5
Normal 6/9 1/5 Weak 6/9 2/5

P(Play=Yes) = 9/14

P(Play=No) = 5/14

12




Example

Test Phase
Given a new instance,
X'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=5Strong)
- Look up tables

P(Outlook=Sunny | Play=Yes) = 2/9 P(Outlook=Sunny|Play=No) = 3/5
P(Temperature=Cool | Play=Yes) = 3/9 ~ P(Temperature=Cool | Play==No) = 1/5
P(Huminity=High|Play=Yes) =3/9 ~  P(Huminity=High|Play=No) = 4/5
P(Wind=Strong | Play=Yes) = 3/9 P(Wind=5trong | Play=No) = 3/5
P(Play=Yes) = 9/14 P(Play=No) = 5/14

- MAP rule

P(Yes|X'): [P(Sunny|Yes)P(Cool | Yes)P(High | Yes)P(Strong| Yes)|P(Play=Yes) = 0.0053
P(Nol|X"): [P(Sunny|No) P(Cool | No)P(High| No)P(Strong | No)|P(Play=No) = 0.0206

Given the fact P(Yes| X') < P(No|X’), we label X’ to be “No”.
13



Relevant Issues

Violation of Independence Assumption
- For many real world tasks, P(X,, ,X IC) P(X,IC) P(X,IC)
- Nevertheless, naive Bayes works surprisingly well anyway!

Zero conditional probability Problem

- If no example contains the attribute value X, a, 13(X]. 2, 1C ¢) 0
K’ J !
- In this circumstance, Px,lc) Bl lc) Blx,lc) 0 during test

- For a remedy, conditional probabilities estimated with

P(X, a,|1C c) em—
n o m
n. :number of training examples for which X; 4, andC ¢,

n :number of training examples for which C ¢
p : prior estimate (usually, p 1/t forf possible values of X)

m : weight to prior (number of "virtual” examples, m 1)
14



Relevant Issues

Continuous-valued Input Attributes
- Numberless values for an attribute
- Conditional probability modeled with the normal distribution

(X. )

lA’(X]-IC c;) rlexp~ 2#
ji ji

;i -mean (avearage) of attribute values X; of examples for whichC ¢,

; :standard deviation of attribute values X; of examples for whichC ¢,

Output | noffkdidbuticheatd Cir o
- Test Phash: L P(C ¢)1 1, ,L
Calculate cdRdit¥nal %babiligas) with all the normal distributions
Apply the MAP rule to make a decision

15



Conclusions

Naive Bayes based on the independence assumption

- Training is very easy and fast; just requiring considering each
attribute in each class separately

- Test is straightforward; just looking up tables or calculating
conditional probabilities with normal distributions
A popular generative model

- Performance competitive to most of state-of-the-art classifiers
even in presence of violating independence assumption

- Many successful applications, e.g., spam mail filtering
- Apart from classification, naive Bayes can do more...
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Introduction
e

® The EM algorithm was explained and given its name in a classi

c 1977 paper by Arthur Dempster, Nan Laird, and Donald Rubi
n

® They pointed out that the method had been "proposed many ti
mes in special circumstances" by earlier authors.

® EMis typically used to compute maximum likelihood estimates
given incomplete samples.
® The EM algorithm estimates the parameters of a model iterative
ly.
- Starting from some initial guess, each iteration consists of
® an E step (Expectation step)
® an M step (Maximization step)




Applications

I
Filling in missing data in samples
Discovering the value of latent variables
Estimating the parameters of HMMs
Estimating parameters of finite mixtures
Unsupervised learning of clusters
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Silly Example

Let events be “grades in a class”

w,; = Gets an A P(A) = 2

w, = Getsa B P(B) = p

w; =Getsa C P(C) = 2
w,=Getsa D P(D) = ¥2-3u

(Note 0 =< p <1/6)

Assume we want to estimate u from data. In a given class
there were
a As
b B's
c C’s
d D’s

What's the maximum likelihood estimate of u given a,b,c,d ?
o



Trivial Statistics

P(A) =12 P(B)=p P(C)=2yp P(D)=1"2-3u

P( a,b,cd| p) =(2)Xm)A2u)(V2-3p)?

log P( a,6,6d | 1) = dog 12 + Hog p + dog 2p + dog (2-3p)
c¢LogP

FOR MAX LIKE u, SET p =0
i

cdLogP —-E+ 2c 3d -0
du p 2u 1/2-3p

Gives max like p = ae
6(b+c+d)

So if class got A 3 C D
14 6 9 10

1
Max like u = —
2= 10
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Same Problem with Hidden Information

REMEMBER
Someone tells us that (A =
Number of High grades (A’s + B's) = A P(B) = 1
Number of C's =C P(C) = 24
Number of D's = ( P(D) = Y2-3y

What is the max. like estimate of u now?



Same Problem with Hidden Information

Someone tells us that

Number of High grades (A’s + B's) = A
Number of C's =C
Number of D’s =d

What is the max. like estimate of y now?

We can answer this question circularly:

EXPECTATION

Since the ratio a:b should be the same as the ratio 2 : u

-

MAXIMIZATION

If we know the expected values of aand b
we could compute the maximum likelihood

value of p

1

REMEMBER
P(A) = V2
P(B) = 1
P(C) = 2
P(D) = 12-3

If we know the value of p we could compute the
expected value of gand b

/) !
h b= ;
oo Je

b+c
6(b+c+d)




REMEMBER

E.M. for our Trivial Problem |-~

We begin with a guess for P(B) = 1
We iterate between EXPECTATION and MAXIMALIZATION to st
improve our estimates of p and aand b. P(D) = ¥2-31

Define p(t) the estimate of y on the t'th iteration
b(t) the estimate of b on t'th iteration

1(0) =1mtial guess
L(t)/

b(t) = =E[b|u()]
%ﬂl(i’)
Gty = b(!)—f—{:’
B = e e+ d)

=max like est of u given b(r)

Continue iterating until converged.
Good news: Converging to local optimum is assured.
Bad news: I said “local” optimum.
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EM Clustering Algorithm

Given a training data set: X={x(1),x(2),...,x(n)}
Z={z(1),z(2),...,z(n)}
z(i) is the calss/group label of sample x(i).
As we are in Clustering setting,

X 1s Given and Z is unknown
Now, we model the data by specifying a joint
distribution p(x(i), z(i))=p(x(i)z(1))p(z(i))

2 () ~ Multinomial(¢) each x(i) was generated by
o; 2 0, ZLI o; =1 randomly choosing z (i) from
=# olz(i)’s values = {1,...,k}, and then (i) was drawn
0= p(z(i) =) from one of k Gaussians.

x(@)|26) = § ~ N(, Z;)

| The parameters of our model are thus ¢, £ and X.|
-0 00— o000 oo0-olo oo opoo oo o

Just data points, no label 0 X-axis




E-M

X=X(1)X(2),....x(n)} Given

Z=(2(1),2(2),...,z(n)} unknown

Incomplete
Data

The parameters of our

What 1s the value of z(1)?

model @; Hs b

unknown

We can answer this question circularly:

We

| EXPECTATION

If we know the expected values of Z

we could compute the maximum likelihood

value of o, 1, &

MAXIMIZATION

If we know the values of ¢, i, ¥ we could
compute the expected valuesof Z

begin with a quess for @, (¢, 2.|, and then iterate between EXPECTATION

and MAXIMALIZATION to improve our estimates of ¢, u, ¥ and Z
Continue iterating until converged.




T

i) = 3 oo o B - gl
|

Maximizing this with respect to ¢, p and X gives the parameters:

| | m | | |
W = =¥ = j},

i=1
i = Zm { —“j}I{I)?
iz {2 =}
p, = 2im HeV =0} - )t - )"
> iy {2 =}




Repeat until convergence: {
(E-step) For each 2, j, set

W = p(a® = j|zt; ,p,7)

(M-step) Update the par dlllEtEl S:

i
D = 1 E ,u,(f]
v I £ 77
ga=
ek (i) (,,]
S

Hj = n 1 ’
T T
S w (@D — p; )(if“:' — ;)7

“EL"

1V



Naive Bayes Classifiers

This article discusses the theory behind the Naive Bayes classifieré and their
implementation.

Naive Bayes classifiers are a collection of classification algorithms based
on Bayes’ Theorem. |t is not a single algorithm but a family of algorithms
where all of them share a common principle, i.e. every pair of features being
classified is independent of each other.
To start with, let us consider a dataset.

Consider a fictional dataset that describes the weather conditions for playing
a game of golf. Given the weather conditions, each tuple classifies the
conditions as fit(“Yes”) or unfit(“No”) for plaing golf.

Here is a tabular representation of our dataset.

0 Rainy Hot High False No

1 Rainy Hot High True - No

2 Overcast Hot | ﬁigh False Yes
3 Sunny Mild High False Yes
e Sunny Cool Normal False Yes

5 Sunny Cool Normal True No



10

11

12

13

The dataset
the response vector.

e Feature matrix contains all the vectors(rows) of dataset in which each
vector consists of the value of dependent features. In above dataset,
features are ‘Outlook’, ‘Temperature’, ‘Humidity’ and ‘Windy'.

o Response vector contains the value of class variable(prediction or
output) for each row of feature matrix. In above dataset, the class
variable name is ‘Play golf'.

Overcast

- Cool

Normal
Rainy Mild High
Rainy Cool Normal
Sunny Mild Normal
Rainy Mild Normal
Overcast Mild High
Overcast Hot Normal
Sunny Mild High

is divided into two parts,

True
Félse
False
False
True
True
False

True

Yes

No

Yes

Yes

Yes

Yes

Yes

No

namely, feature matrix and



Assumption:
The fundamental Naive Bayes assumption is that each feature makes an:

¢ independent
e equal

contribution to the outcome.
With relation to our dataset, this concept can be understood as:

e We assume that no pair of features are dependent. For example, the
temperature being ‘Hot’ has nothing to do with the humidity or the
outlook being ‘Rainy’ has no effect on the winds. Hence, the features
are assumed to be independent.

e Secondly, each feature is given the same weight(or importance). For
example, knowing only temperature and humidity alone can’t predict the
outcome accuratey. None of the attributes is irrelevant and assumed to
be contributing equally to the outcome.

Note: The assumptions made by Naive Bayes are not generally correct in
real-world situations. In-fact, the independence assumption is never correct
but often works well in practice.

Now, before moving to the formula for Naive Bayes, it is important to know
about Bayes’ theorem.



Bayes’ Theorem

Bayes’ Theorem finds the probability of an event occurring given the
probability of another event that has already occurred. Bayes’ theorem is
stated mathematically as the following equation:

?C&\A) A

PCA)\ 8) = W

where A and B are events

e Basically, we are trying to find probability of event A, given the event B
is true. Event B is also termed as evidence.

e P(A) is the priori of A (the prior probability, i.e. Probability of event
before evidence is seen). The evidence is an attribute value of an
unknown instance(here, it is event B).

» P(A|B) is a posteriori probability of B, i.e. probability of event after
evidence is seen.

Now, with regards to our dataset, we can apply Bayes’ theorem in following
way:

P oxgy) PLY)
PCX)

?(\J} x) =

where, y is class variable and X is a dependent feature vector (of size n)
" where:

X2 (N’ 3 )



Just to clear, an example of a feature vector and corresponding class
variable can be: (refer 1st row of dataset)

So basiCélIy, S(XIy) €re means, the probability of “Not playing Q‘&Sl&f"’”gilveﬁk
that the weather conditions are “Rainy outlook”, “Temperature is hot”, “high
humidity” and “no wind”.

Naive assumption

Now, its time to put a naive assumption to the Bayes’ theorem, which
is, independenceamong the features. So now, we split evidence into the
independent parts,

Now, if any two events A and B are independent, then,

P(A,B) = P(A)P(B)

Hence, we reach to the result:

PCXOYY) R Y) - - POy OPLY)
PC&T%;‘;L@) —~ - ¢ — i e ey

PC) PO -~ PO

which can be expressed as:

oy o PO T POl
- — ey e L



Now, as the denominator remains constant for a given input, we can remove
that term:

POy ) & PO T P0G Y)

Now, we need to create a classifier model. For this, we find the probability of
given set of inputs for all possible values of the class variable y and pick up
the output with maximum probability. This can be expressed mathematically

)

3 ;av?(mama/?ﬁﬁ) TKZ) P(J(A

So, finally, we are left with the task of calculating P(y) and P(x; | y).

Please note that P(y) is also called class probability and P(x,| y) is
called conditional probability.

The different naive Bayes classifiers differ mainly by the assumptions they
make regarding the distribution of P(x, | y).

Let us try to apply the above formula manually on our weather dataset. For
this, we need to do some precomputations on our dataset.



We need to find P(x| y,) for each x,in X and y;in y. All these calculations

have been demonstrated in the tables below:

Outlook Temperature
Yeas | No | P{yes) | P(no) Yes | No | Pives) P{no)
Sunny 2 |3 | 2 3/5 Hot 2 2/9 2/5
Owvercast <4 L 4% OB Mila 4 478 245
Rainy 3 2 BiG 25 Cool 3 1 B9 145
Total 9 5 | 100% | 100% Total © 5 1 00% 100%
Humidity Wind
Yes | No | Plves) | P(no) Yes | No | Plyes) Plno)
High 3 4 B39 475 False & 2 6/9 25
Normal & 4 6/8 175 True 3 3 3/9 355
Total g 5 100% 100% Total o 5 1O0% 100%
Play P{(YesiP(MNo)
Yes £+ G4
No 5 B4
Total 14 100%

So, in the figure above, we have calculated P(x; | ;) for each x,in X and y, iny
manually in the tables 1-4. For example, probability of playing golf given that
the temperature is cool, i.e P(temp. = cool | play golf = Yes) = 3/9.

Also, we need to find class probabilities (P(y)) which has been calculated in
the table 5. For example, P(play golf = Yes) = 9/14.

So now, we are done with our pre-computations and the classifier is ready!




Let us test it on a new set of features (Iét us call it today):

nny, Hot, Norm

g golfls

So, probability of playin y:

. oHewp ]y es) -
p CSunh7wl'/(5° [\ja) P s1of 3
PC‘J@AHOA”?),!, PCMormal Hunadim|y es) P(Ne Losud|\yen) Plyes)
T Py

and probability to not play golf is given by:

P&y suHekNo) P =t bewsp| M)

e No)PGro)
Pl H‘D&“'} ?\\{,g PvC l%rmdﬁuﬂw%) Sl e
- p Ctoday)

Since, P(today) is common in both probabilities, we can ignore P(today) and
find proportional probabilities as:

2 =
(lbedey & 2508 - 2
and
|2

Now, since

PLyer {doday) o € Lo odeyy =)




These numbers can be converted into a probability by making the sum equal
to 1 (normalization):

0.ol4]

PLyes fodeyy = < e | st

O.0l4 |+ 0 voclb8

and
\ 0. 66638 -~ o282
<o c‘f“ — e -
\OL‘ '6_% 7> Q\DIL;,"}“‘D‘DDCQB

Since

So, prediction that golf would be played is ‘Yes'.

The method that we discussed above is applicable for discrete data. In case
of continuous data, we need to make some assumptions regarding the
distribution of values of each feature. The different naive Bayes classifiers
differ mainly by the assumptions they make regarding the distribution of P(x; |

y).
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